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ABSTRACT 

First, second, and  fourth order finite difference approximations t.o the color equation  in  both  advection  and 
conservation  form are considered  in one and  two space  dimensions. All schemes  considered arc based  on forward 
time differences and  most involve  cent,ered  space  differences. All are shown to be numerically stable  for luAL/Az[ 5 1 .  
Test calculations  indicate that for  the  same  order of accuracy, the  conservation  form produces more accurate  solutions 
than  the  advection  form.  For  either conservation or advection  form,  fourth  order schemes are shown to be morr 
accurate  than second or first order  schemes in  terms of both  amplitude  and  phase  errors. 

1. INTRODUCTION 

Both  analytic  and  numerical  solutions of the  Eulerian 
equations of hydrodynamics  are  limited in extent  by  the 
nonlinear  advection,  or transport terms.  Analytic  solutions 
are difficult to obtain because the advection  terms  render 
the  equations nonlinear.  Numerical  solutions are readily 
secured in principle but  are  inaccurate because finite dif- 
ference approximations of the advection  terms  can  intro- 
duce  errors  in  both  phase  and  amplitude.  This  paper  deals 
with  several  different  methods of numerically modeling 
the  advective process. 

The continuity  equation  and  the  Euler  equations, for 
flows with  neither sources, sinks,  nor  body forces, are 

Equation (1) may be combined with (2) to give 

Equations (1) and (3) are  in  the so-called conservation 
form; mass and  momentum  transports  appear  as  diver- 
gences of mass  and  momentum fluxes. Green's theorem 
may be used to transform  these  terms to surface  integrals, 

1 This work wm performed under the auspices of the U S .  Atomic Energy Commission. 

and this  leads to particularly  satisfying  finite  differcn,.r 
approximations  in which mass  and  momentum are  identi- 
cally conserved [8 ] .  

Equation (2) is in advection  form.  Although bused on 
reasonable  physical  arguments,  finite difference approxi- 
mations  to t,he advective  vector (uJfuk, *) do not necessarily 
contain  momentum  conservation. 

Equations (1) and (2) describe the  stme physical situ- 
ation  as  equations (1) and (3); for identical  boundary and 
initial  conditions, the two sets  must  give t.he same exact 
solution.  Since  there is no unique way of writing finit,e 
difference approximations  to  partial  derivatives,  the 
numerical  solutions  from the two sets o f  difference equa- 
tions are expected to be  different. They  must, however, 
approach the exact  solution as At and A x  approach zero. 

Roberts  and Weiss [11] have examined second and 
fourth  order numerical  schemes  for  equations  in conserva- 
tion  form. Bryan [l] has pointed out  that a  numerical  non- 
linear  instability  can  be  eliminated  by  properly differenc- 
ing  equations in conservation  form. The well known 
Lax-Wendroff scheme [4] is based on the  equations being 
in  conservation  form, and  has been used with  remarkable 
success by  Burstein [2] in two  dimensional compressible 
hydrodynamic  calculations. 

In order to  obtain  the  advantages offered by conserva- 
tion form,  the finite difference equations  must,  be  properly 
composed wit,h respect to accuracy,  numerical stability, 
and conservation. In certain  coordinate  systems, however, 
proper  evaluation of the  transport  terms  may lead to quite 
complicated  algebraic forms  that can be relatively  time 
consuming to compute. On the  other  hand,  the advection 
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form  may give simpler and  thus  cheaper, difference equa- 
tions. Even if one is  then forced to use the advection  form 
rather  than  the conservation  form by practical  matters, 
such as limited  available  computer  time, it is possible that 
t,he trade-off of accuracy for efficiency  will not cause the 
results to be  utterly unreliable.  Although the advection 
form of t,he equations  does  not  guarantee  conservation, it 
does not follow that  the proper quantities will not be 
approximately  conserved. 

The  dependent  variables in the  partial differential 
equations of interest  are generally all functions of space 
and  time, so that  both  time  derivatives  and space  deriva- 
tives must be numerically  approximated. Since the evolu- 
tion of these quantities  in  time is desired, the usual 
approach  is to use space  derivatives to evaluate  time 
derivatives.  This  may  be accompl'ished by implicit  methods 
[6], centered methods [ l o ] ,  or so-called one-sided methods. 
In  the (forward) one-sided method, values of the  space 
derivative a t  time t are used to  estimate  the  time  derivative 
at t+At /2  and  to  thus  advance  the  state of t,he  system  to 
time t+At .  Space  derivatives  may  be  either one-sided, or 
centered,  and examples of both will be given, but centered 
space  derivatives  and  forward  time  derivatives will be of 
primary  interest. 

The  intent of this  paper is thus  to examine  several 
different finite difference approximations  to  the  advective 
process. First, second, and  fourth order schemes for 
equations in both  advection  and conservation form are 
analyzed. It is shown that all schemes are  stable for 
IuAt/AxI 5 1 ,  but  that each scheme  introduces  both  phase 
and  amplitude  errors.  These  errors,  for  t,he  linear  case, 
can be calculated and  are displayed as  contour  plots. 
Results of test calculations  in  one and two  space  dimen- 
sions are also given. 

9. THE COLOR EQUATION 
In  order to examine the problems of numerical  advection, 

finite difference approximations  to  the color equation 2 

in  Cartesian  coordinates will be  analyzed,  where $=$ 
( x ,  y, t ) .  An equivalent  form of (4) is 

The dependent  variable $ is some property (nondiffusive 
color, say) of the fluid that is  transported  along  by  the 
flow  field so that its total  derivative along an  instantaneous 
streamline  is zero. That is, equations (4) and (5) when 
written  with respect to  an observer  who  moves  with the 
fluid simplify to 

so that  the observer will measure  no  change  in 3. as time 
passes. This notion will be used in forming the difference 
equations for the advection  form of the color equation. 

Equation (4) is the advection form of the color equation 
and  equation (5 )  is the conservation form of that equation. 
It is emphasized t,hat this  equation is written in two 
different  forms because each lends itself to a finite  differ- 
ence approximation based on a  particular physical argu- 
ment,  but  that  the  same solution is expected from both 
cases. 

For simplicity 11, and v, the  components of velocit,y in 
the x and y directions,  respectively, will be assumed to be 
specified functions of space but independent of time 
although in general they  may be  time  dependent also. 

3. ONE  DIMENSIONAL  ADVECTION  FORMULATION 
The color equation in advection  form in one space 

dimension is 
w b* -+u -=o at b x  

where now $=$(x ,  t ) .  
If ?& is  a constant,  and $ ( x ,  O ) = f ( x ) ,  a solution is 

and  this  furnishes the basis for the following finite differ- 
ence approximation. 

Let + Y = $ ( j A x ,   N A t )  where j and N are integers. 
@' is then known at  the intersection of a space-time 
lattice. Given #Y, for all j, in order to comput,e +:+l, one 
constructs  a  characteristic (of slope 6x/6 t=u)  through  the 
points G A x ,   ( N + l ) A t )  and ( G + r ) A x ,   N A t )  where T is  not 
necessarily an  integer (fig. 1). Equation (6) then  states 

where 6 x =   + - A x .  Since r is not  in general an  integer it is 
necessary to interpolate on the I# field to determine $*. 
Interpolation on the  three  points j - 1 ,  j ,  j + l  results in 

where a = u A t / A x ,  and fi is thus  advanced in time  by 
setting 

$y+y'"=$*, 

Limiting  this to  an interpolation  procedure  requires that 

The above  result  may also be  obtained  by a 'raylor 
series expansion in time, which will display t'he order o f  
the  truncation errors 

b I < 1 .  

Using the differential  equation to convert  time  derivatives 
to space  derivatives yields 
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and  evaluation of a$/& and az$//dx2 to second order 
gives 

where the term O(Atz )  occurs in  the general case where 
u=u(x, t ) .  Thus  the  evaluation of yY+' by (8) has  errors 
of order At2 and Ax3 and  this is  usually  referred to  as a 
second order  scheme,  although it is only firs'c order ac- 
curate  in time. 

In  order to make  the  notation less cumbersome, spatial 
differences will from now on be written  in  terms of linear 
difference operators which will be  represented  by  capital 
roman  letters. Schemes based on forward  time differences 
are  thus  in general  written 

where $ is a  vector  with  components $', y i Z ,  . . . , $.,; 
A is the  spatial difference operator,  and ( I $ ) j = $ , .  The 
particular scheme just discussed (the  quadratic advec- 
tion Scheme) has  the  operator 

If the  interpolation for $* is  carried out on a  curve 
obtained by fitting  the five points  surrounding j with a 
polynomial, a  "fourth  order" scheme is produced with 
the  operator. 

Thus 

Since a- 1, this  operator  is  then  fourth  order  accurate in 
space but since the  time  and  spatial  variation in u are still 
not accounted  for, it also has  errors O(Atz )  as does the 
previous scheme.. 

1 L 

I t  
AX N 

j- 1 j :t1 

At =8t  

FIGURE 1.-Advection diagram. 

For complet.eness, two  more  types of schemes :ire  giver1 
below. The first  originated  with Lelevier 191 and is a n  
example of R, first, order  scheme. It contains nn ttppreciuble 
amount of numerical  damping, which makes it, tmsuitnble 
for problems involving  relatively long integration t'irnes. 

(12) 

Thus  the scheme  involves choosing a one-sided space 
de,rivat,ive of $ from t,he LLupstream'l  direction. I t  W:L> 

used in some early (1958) two  dimensional coml)ressible 
hydrodynamic  calculations,  but, was discarded soon 
thereafter  for a  scheme in conservation  form [8] in whirl], 
however, the one-sided space differences were retained. 

The second type involves  third  order  errors in time 
[lo, 31. These schemes may for example involve tfwo stjep 
processes in which lower order  intermediat,e  results :Ire 
first  calculated at t + A t / 2 .  These  and  t~he funct*ion tit 

time t are  then combined to give the final, higher  order 
result a t  t+At .  

The process is represented symbolically by, 

$y"=[(I-c)ty], 

C=B(I--8), (B$)f=g ( $ j + l - $ j - l )  

1 
( A $ ) ~ = z  ( J N I j - 8  ($j+,-2$,+$,-11 

a2 ( 1 3 )  

where 

and 

which results in w. scheme second order accur:tt,e  in bot'h 
space  and  time. 

4. ONE  DIMENSIONAL  CONSERVATION 
FORMULATION 

The conservation form of the color equtttion in one 
space dimension is 

w "=o. 
at, bx ax 

If the  term accounting for the  transport of $ by the fluid, 
d$u/dx, is thought of as  the divergence of a flux, appli- 
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cation of Green's  theorem [7] then  predicts that  in  any 
zone the decrease of $ with  time is proportional  to  the 
net flux out of the zone (modified in  this  case  by  the 
compression term  $bu/bx). 

The flux across a  zone boundary at j + %  is 

Assuming $ to  vary  linearly between $j and $j+l and 
integrating  equation (14) results  in 

If $ is  assumed to fit a  cubic  through j-1, j ,  j+l, 
j+2,  evaluation of (14) gives 

-- [($,+l+s,)-(sj+z+$r-l)l a3 
12 

a4 +z [3($r+l-$r)-($j+z-G,-1)1 (16) 

where a=aj+1i2. 
A second order flux divergence  scheme is then given by 

(17) 

where Fj+1i2 is given by (15), and  .a  fourth  order flux 
divergence  scheme is 

-(Uj+3/z-Uj--3/2) 1 -z (Fy+uz-Fy-1/2) (18) 1 At 

where Fj+% is  given by (16) and  &~/axl,  has been  evalu- 
ated  to  fourth order. 

It is clear that  the  transport  term  leads  to  identical 
conservation of $ since  the  only  net flux into  the  total 
system occurs at  the boundaries,  all  interior fluxes balanc- 
ing out.. 

It is seen by  comparing  equations (15) and (16) with 
(10) and (11) that  in  a  Cartesian  coordinate  system a t  
least,  the  advection  and  conservation  forms  require 
approximately  t,he  same  number of arithmetic  operations 
per point.  This is  probably  true for scalars  in  most co- 
ordinate  systems.  Unfortunately,  correctly  approximating 
the divergence of a  tensor  on  a  nonrectilinear  coordinate 
system involves an increase  in  the  number of arithmetic 
operations necessary per point,  and so in some cases it 
may be necessary for  reasons of economy to use the 

advection  form  for  the  momentum  equation. An example 
of this is the  momentum  equation on  a spherical coordinate 
system. 

A  count of arithmetic  operations  shows that  the second 
order  advection  operator  requires 5 multiplies  and 6 
additions per point while the  fourth  order  advection 
operator  requires  13  multiplies  and 18 additions per 
point. The increased accuracy  thus  costs  a  factor of three 
in computing speed. 

5. STABILITY  ANALYSIS 

A  solution of the color equation is 

$(x, t)=efk(")- -$(x) O)e-"ut 

so that  the  initial configuration $(x) 0) is  merely translated 
a  distance  ut in time t and  the solution after  a  time 
interval A t  has  a  phase angle -kuAt= "Ba where 8 = 
kax. There is no amplitude  damping. 

For the difference equations,  phase  and  amplitude 
errors as well as a necessary condition for stability  are 
given  by the eigenvalues of (I-A)  in  equation (9).3 
Substitution of an eigenvector efkjAZ for in (9) results 
in  the recursion yP+'=f(k)yP where ((k) is a complex 
eigenvalue of a  particular difference operator. For the 
difference equations considered here,  which  employ one- 
sided time  derivatives, I f /  f l  so that  an  amplitude 
modification occurs each cycle. Since stability  dictates 
that I f 1  I 1  and  the  analytic  solution involves no amplitude 
damping, it is  desirable  for f to  be  as close to  the  unit 
circle (but  not  outside)  as possible. The phase angle is, 
from  the  numerical  solution  in  time At, 

6= tan" [Im (,$)/Re ( f ) ]  

and  in general 6 #  -ecU. Thus  the  relative  errors in 
amplitude  and  phase in a  time  increment At are 1- I f 1  
and 1 -a/&, respectively. 

Substituting e f k j A z  for $ j  into (10) and (11) in  turn, it is 
readily seen that  the eigenvalues of I-A are 

.52=1-~2(1-c~~ e)-& sin e (19) 
and 

,+I-- (15-16 cos e+cos 2e)+- (3-4 COS e+cos 20) a2 a4 
12 12 

-i{ (8 sin @-sin 2e)+- (-2 sin Bfsin  20)). (20) (u3 
6 

The  magnitude of E2 is then 

l(z12=1--d(l--a2)(1--cos e)' 

a If the matrix of B is normal, then a necessary and sufficient mndition for the stability 
01 + N + ' = B V  is l r l l l  wherer is the maximum  eigenvalur of Ti 191. If B is  not  normal, 
then Irl<l is necessary but not  sufficient for stability. In practice B is rardynormal but 
it is found that the restriction l r l < l  usually prevents the occurrence of instabilities. 
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so that  stability is guaranteed by a2 5 1. The magnitude of 
E4 is 

\t,p=1-- (1-a2)(1--cos e>y(a, e) 

f ( a ,  e)=(l--cos e)a*-(9-5 COS e)cu2+4(5-~0~ e). 

36 
where 

Let F(a)=j(a,w) where w is any  (ked)  value of e. The 
roots of F(a) are  then  &2  and &:7/(5-cos w)/(l-cos 0). 

From  this it is seen that since F(a)>O for a2<3, the 
fourth order  advection  scheme is stable for az< 1. 

Evaluation of the eigenvalues of the  operators used in 
the conservation  form  is accomplished by assuming (Y to 
be a constant which then  reduces the conservation  equa- 
tions to (9). The eigenvalues for the second order scheme 
turn  out  to  be  the  same  for conservation  and  advection 
forms, but  the  fourth  order-conservation  form  has  the 
eigenvalues, 

~ ~ ~ = 1 - -  (27-28 cos e+cos 2e)+- (3-4 COS e+cos 2e) cr2 (Y4 

24  12 

-i{ (10 sin (?--sin 2e)+- (-2 sin O+sin 20)). (21) a3 
6 

The magnitude of t4c is 

Ii4cp=1 - - (1 --COS e)2g(a,  e)  a* 
144 

where 

g ( a ,  e)=87-72 COS e+g C O S ~ ~ - ~ ~ ( I - C O S  el(97-25 COS e> 
+ 4 a 4 ( 1 - ~ ~ ~  e)(9-5 COS e ) - 4 ( Y 6 ( ~ - ~ ~ ~  e)2.  

It can  be shown that IEtc12 has  extrema at  8=0 and T ,  

but since IE4,12=1 for e=o, the  extremum a t  e=T is the 
one of concern since it can  result  in  numerical  instabilities. 
(It is usually true  that  the higher  wave  numbers are  the 
least  stable.) 

Evaluation of &e) a t  O=T results  in 

g ( a ,  ~ ) = 1 6 ( 1 . 5 - a ~ ) ( 2 - a ~ ) ( 3 . 5 - a ~ )  

so that  the  fourth order  conservation scheme is stable for 
~ ~ ~ 1 1 . 5 .  

I n  order to  further examine the relationship of the 
solution  obtained by difference approximations to  the 
analytic  solution,  contour  plots of and of relative 
phase as  functions of 8 / ~  and a have been constructed 
(figs.  2-11). I n  these figures, the contour  interval is 0.1 ; 
functional  values less than one are  plotted  as broken 
lines while solid lines represent  values  greater  than or 
equal to one. 

Figures  2  through 6 present level lines of for the 
several difference schemes discussed here. Since dotted 
lines cover  numerically stable regions it is seen that all 
schemes are  stable  for all  wave  numbers if la1 51. Further, 
the  fourth order  conservation  scheme is stable for a2<1.5 
while the two-step second order  scheme is stable if 
/a1<2, and  has  very  little  damping for lal<l. 

2.0- 

1.5- 

1 .o- 

l u l 9  
Ax 
.5 - 

0 -  

I 

t 
0 .5 1 

k AX/T 

I 

FIGURE 2.-Level lines of ( € 1  for  equation (12) (first, order)  as :I 

function of S/r and a. The  contour  interval is 0.1; hrokcn lines 
represent  constant  values of It]< 1 and solid  lines  rcpresent 
constant  values of 2 1. Figures  2 through 1 1  all I I S ~  the samo 
plotting  convention. 

Figures  7  through 11 are level lines of the  relative 
phase, --/eff as a  function of wave  number and a as 
computed for the difference schemes discussed here. I t  is 
seen that for most schemes, in the  stable region, the 
contours are broken  lines  indicating  t,hat waves in the 
numerical solution  move  more slowly than t,lley andyt- 
ically should. 

The figures for one step forward t,ime differences all 
have the  same  characteristics.  For t t  fixed value of CY, 
both  amplitude  and  phase  errors increase as e increases, 
becoming maximum for e=T. This is the highest  wave 
number  a given mesh can  support  and  this wave  has IL 

zero relative  phase  velocity.  Fortunately, maximum 
damping  occurs a t  this  same  wave  number so that  the 
numerical amplitude error  compensates for t,he  relative 
phase error in this case. For a given wave  number  the 
amplitude  damping goes through a. lnaxinlunl as a runs 
from zero to  one. In a perverse manner,  the phase error 
goes t.hrough t i  minimum for the  same  range of a, so thtit 
once again the  damping  error  compensates for the phase 
error, but in an  undesirable  way  this time. For low wave 
numbers,  the phase  error is less for a=l than for a-=O. 
Thus  calculathns for which (Y is small will suffer large 
phase  errors but less than maximum  damping, and 
calculations for which (Y is  near  unity will also have less 
than maximum damping but will have  smaller  phase 
errors. Intermediate values will result in small phase 
errors, but large  amplitude errors. 
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2.0- I 0 

1.5- 1.5- 

1 .o- 

l u l L j  
Ax 
.5 - 

1 .o- 

lulat 
Ax 
.5 - 

0 -  0- 

FIGURE :$.-Level lines of for equation (17) (linearized) or (10) 
and (9) (second  order). 

FIGURE 5."Level  lines of I$ for equations (11) and (9) (fourth 
order). 

2.0- 

1.5- 

L 
~ _"" - """"_ 

1 .o- 

IulLG 
AX 

.5 - 
z "-"""_ 

0 -  

0 

FIGURE 4.-Levcl lines of 1 ~ 1  for equation (13) (second  order, 
two-step). 

Comparison of figures 2 and 3 shows that  the second 
order scheme has appreciably less damping  than  the 
first  order scheme, but figures 7 and 8 indicate that  the 
second order scheme has a  slightly  greater  phase  error 

It is seen that,  the  fourth order  conservation  form 
(fig. 11) has a greater  relative  phase  error  than  the  fourth 
order advection form (fig. lo), but  that it st,ill is an im- 
provement over lower order schemes. 
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2.0- 

1.5- 

1 .o- 

lul& 
Ax 
.5 - 

0- 

0 .5 

k A X / ~ T  

! I 
1 1 .o 

FIGURE 7.-Level lines of -6 /8a,  the  relative phase for  equation 
(12) (first order).  (For  constant u, the correct  phase is -8a. 
The  phase  for solutions generated by the difference  scheme  is 6.) 

2.0 

1.5 

1 .o 

lul& 
A: 

.5 

0 

0 .5 

k A X/T 

1. 

FIGURE 8.-Level lines of --/ea for ql1.xt,ion (17) (linearized) or 
(10) and (9) (second  order). 

a t  each wave  number (for low a) which becomes larger 
as a! increases. 

The two-step procedure  (compare fig. 9 with fig. 8)  
tends  to  linearize the phase  error in that  it is  almost 

284-383 0 - 68 - 2 

0 .5 1 .o 
k A x/lr 

FIGURE 9.-Level lines of - 6 / 8 ( ~  for  rquntion (13) (swond  ordrr, 
two-step). 

Iu lAi  
Ax 
.5 - 

0 .5 

k A x / i ~  
1 .o 

FIGURE IO.-Levcl lines of "/@a for  equations (11) and (9)  
(fourth  order). 

independent of a, at  least for a 5  1. This  then does not 
improve the accllracy,  but, does tend to make  the  phase 
error  more predict.able. 
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0 .5 

k A X / H  

FIGURE 11.-Lcvrl lines of -66/8(u for  equation (18) (fourt,h  order, 
conscrvnt,ion). 

6. ONE  DIMENSIONAL  CALCULATIONS 

It' can be shown t'hat given $(x,O)=.f(log 7 1 ) ,  u=ax+b 
(a  and b constants), a solution of 

is 
$(x, t )  =.f (log ?A-ut). 

Thus given a flow in which the divergence of the 
velocity field is R constant in spac,e and  time  and t,he 
initial $ configuration is tiny function of the  logarithm of 
t,httt, velocit,y field, t,he  value of $(x, t )  is  det,ermined for 
t 2 0 .  

This solution differs from  t,he  usual  wave equat,ion 
type of solution (equation  (6)) in that,  the velocity need 
not. be a constant,.  Since in the  test problems the velocity 
field is chosen not, to be a constant  in space, the  term 
$ du/br does not, drop out, of the conservation form and 
11 realistic  test of advection  versus  conservation  is  achieved. 

The  test calculat,ion used to  obtain  solutions from the 
vario1,s difference schemes is the following. In  the interval 
0<x_<L/2, ?c=0.9-S16x/L and for L/2 < x < L ,  I(,= 

-0.7+1.6x/L where L is some length.  Initial  conditions 
are generat.ed from t,he ?( field tso be $(x, O)=log ?[. Peri- 
odic spatial  boundary  conditions, $(O, t)=#(L, t ) ,  are 
imposed. 

Figures 12 and 13 give results of one dimensional test 
calculat,ions from various difference schemes. In both 
figures, curve A' is a plot. of vAt/Ax, and  curve A is 
$(x, 0 ) ,  the  initial $ configuration  for all test,s. In all 
calculations, At/Ax=l so t,hat CY varies  between 0.1 rtnd  0.9. 

0.2 

-0.6 
@ -0.8 

- 1.0 --:l:w[ -1.6 ~- A  -INITIAL  CONDITIONS -! 
B -SECOND  ORDER 

C  -FOURTH  ORDER 
-1.8 ADVECTION 

-2.0 -- \ I  ADVECTION 
-2.2 " D  -SECOND  ORDER - 
-2.4 E-FOURTH  ORDER  CONSERVATION - 

CONSERVATION 

5 10 15 20 25 30 35 
L /Ax 

FIGURE 12.-Results of one  dimensional test calculations with 
second and  fourth  order schcmes. 

Figure 12 gives the results of one dimensional calcula- 
tions  with the second and  fourt,h  order schemes for both 
the advection  and  conservation  forms. Each solllt,ion is 
t,he result of 989 calculation cycles which corresponds to 
the  curve being translated  through  a  distance 1OL or 360 
zones. Curve B is the solution  generated  by u combination 
of equations (10) and  (9),  the  quadratic advection 
scheme. Curve C is also a result of t,he  advection pre- 
scription, being the  fourth order  solution, a combination 
of equations (11) and  (9).  Curve D is t,he solution of  the 
second order  conservation  form  (equation (17)) and curve 
E is the  fourth order conservat,ion form so1nt)ion (equat,ion 
(18)). 

Figure 13 gives results of test calculations  with some 
odd schemes. Curve B is the  result of a two step, second 
order  calculation  (equation  (13)) and curve C is t'he 
result, of a fourth order  two-step  calculation  similar t o  
equation (13) but with  the second. order spatial operators 
replaced by  fourth order  operators.  Both of these curves 
are  plotted  after 989 cycles so that,  the  curve  has moved 
t~ distance 101,. Curve D is the  result of a first order 
calculation in conservation  form using the ideas con- 
tained in equation  (12). It is the  result of only 99 cycles 
so tahat  this  curve  has only been t,ransport,ed a distance L. 
After 989 cycles, the  strong  dumping in this  scheme has 
reduced the  result  to $ = - I 2  for all x. 

Comparing  curves B and  C  in figures 12 and 13 it, is 
seen that,  the two-step calculat,ions do  result in slightly 
more  accurate solut,ions, but  t,hat  the accuracy is improved 
even more by switching from  advection to conservation 
form,  the most  accurate  result coming from the  fourth 
order scheme in  conservation form. 
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FIGURE 13.-Result of one  dimensional  test  calculations  with second 
and  fourth  order two-step schemes and a first order  conservation 
scheme. 

In  experiments, it has been found  in  all the  test cases 
considered in this  report,  that  an  abbreviated  fourth order 
scheme (advection  form) gives results which differ very 
little from those  obtained  with (1 1). The abbreviated form 
is produced by  dropping the  last two  terms in ( l l) ,  the 
a3 and a4 terms. 

7. TWO DIMENSIONAL  CALCULATIONS 
In two dimensions, the color equation is 

and $(x,  y, t )  is assumed to be known on a  three  dimen- 
sional space-time mesh where $?, 2=$(kAx, lay, N A t )  for 
integral  values of k, 1, N .  

Difference equations in two dimensions are constructed 
following Marchuk's  method of fractional  time  steps 
[5,  61, so that in  operator  notation,  the  advection form 
becomes, 

G~t'=[(I--)(I--B)GNlr, z 

where A$ and BG represent  advection  in the x and y 
directions. In  practice, GN+' is the  result of two distinct 
comput,ations;  first #+= (I-B)$C/", followed by GN+l 

= (I-A)++. A and B are  thus one dimensional  operators 
and  the two dimensional schemes (both  advection and 
conservation  forms) considered here  are in fact composed 
of the one  dimensional  operators discussed in earlier 
sections of this  report. 

The approximation  t,o the conservation form is written 

G~~'=[(l+r>(I-A)(I-B)G~I~, z 

where A$ and By5 are proportional to fluxes in the x and y 

directions and r is the appropriate  finite difference estimate 
o f  &c/dx+bv/dy, t.he divergence o f  t,he velocity field 
(1 + r  is a scalar). 

The stability  analysis o f  two dimensional schemes is 
m:tde quite simple if the  method of frwct,ionttl time stel)s 
is adopted,  for  then  t,he  stability of the  total step is 
guaranteed if each separate  step is it,self stable. 'I'hlis 

only the component  one dimensional opertttors Ilt1ve t o  
be examined for numerical stability, m d  since the t w o  
dimensional schemes considered in this  report, nre coln- 
posed of one  dimensional operat,ors which I1:tve been 
analyzed  in an earlier sect,ion, t,he two dimensional schemes 
may  be considered to be  stable,  subject of course t o  the 
one dimensional stability requirements. 

The two  dimensional test problem is tile following. A 
square mesh is chosen with Az=Ay= 1,  and with 50 sones 
in each direction. I n   d l  cases At is 0.5. 11 velocity 
field corresponding to solid rot,ation is genertited 1))- 
,u= - (y-y0)/25 and z)= (x-x0)/25, where u nnd 1 1  :ire the 
Cartesian velocity component,s,  t,he  angular velocit,y o f  
this flow field thus being 0.04 per unit  time, :md t,he flow 
field circling around  the  point (xo, y o )  =(25, 25). The 
dependent  variable, \P, is set. constant'  everywhere except 
in a region surrounding t,he point  (25, 10) \\-here it coni- 

poses a right circulttr cone lvith base  radins 5 m d  heightj 1 .  
Figure 14 is a plot o f  initial  conditions for the two 

dimensional tests. The short  line  segments represell1 
velocit~y vectors, giving the direction  and (scaled) magni- 
tude of t,he  (constant, in time)  velocity field. There is one 
velocity vect,or plotted in each zone. The circular pattern 
in the lower center is a plot of level lines o f  +(x ,  y). Since 
the evaluation of $ is governed only  by  advection, ttnd t,he 
specified velocity field corresponds t.o solid rotntion,  the 
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FIGURE 15."Sccond order solution at cycle 175. FIGURE 17."Second order solution at. cycle 475. 

FIGURE 16.-Second  order solution at cycle 325. FIGURE 18.-Fourth order solution at cycle 475. 

circular pattern should migrate  in a circle of constant, 
radius,  in  a counter-clockwise direction  aroond the  center 
of the mesh. 

Fignres 15,  16, and 17 show the  resulting + field a t  
cycles 175, 325, and 475, respectively, when the differ- 
ence equation is the second order scheme described. 
These  plots are essentially  snapshots taken of contour 
lines of the $ field after it has been rotated  by  the velocity 

field approximately  through T ,  27r, and 37r radians, 
respectively. 

Figures 18 and 19 show the resulting $ field after 475 
and 950 cycles (rotations  through 37r and 67r radians), 
respectively, when the difference equation is the  fourth 
order  advection scheme. 

These plot,s are  all  unretouched CRT plots  made  with 
existing plotting  routines (which use linear  interpolation 

i 

I 

i 
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procedures) on the  computer,  during  the execution of a 
problem. 

Both of these  calculations were repeated using the 
appropriate equations  in  conservation form,  but  the 
results were not qualitat,ively different from  results 
obtained  from  the advection  forms.  Since the two di- 
mensional test case involves nondivergent flow, this 
result is not too surprising. 

Test calculations have also been made  in which the 
difference equation was not  split  into  separate sweeps, 
corresponding to 

p+'= (I-A-B)P. 

These  tests  all showed serious distortions  in  the $ field 
after  a  rotation of approximately s/2 radians.  This  in- 
stability was  pointed out, for the  quadratic advection 
scheme, by  Leith [5]. 

It is apparent from  these  crude and  qualitative  results, 
that for problems in which advection is important,  fourth 
order schemes offer quite  an increase in accuracy over 
second order schemes. It should be  pointed out, however, 
that in  practice  velocity fields are usually not  constant 
in time, but  rather  are coupled in  a  nonlinear  manner 
to  the  quantity being advected. The final evaluation of 
the usefulness of these  higher  order  advection schemes 
can  be made only  after  they  are  tested in more  realistic 
hydrodynamic models. 

A short computer-generated  motion  picture has been 
produced that displays the second and  fourth order  two 
dimensional results. 

8. SUMMARY 
Finite difference approximations to advection  have 

been examined for the color equation in conservtttion 
form  and  in  advection  form. The numerical  prope,rties 
of the one  dimensional  formulations have been displayed 
by  plotting  the  errors  in  amplitude  and phase due  to  the 
finite difference approximations. From these  contour 
plots, it is seen that in general, amplitude  and  phwe 
errors  decrease (at  the expense of increased computing 
costs)  when  higher  order  estimates of derivatives tire 

used. Numerical  experiments confirm t,his and also show 
that  the conservation form is t,o be preferred over the 
advection  form. 

Approximations to  time  dependent  advection in two 
space  dimensions based on Marchuk's  method o f  fructional 
time  steps  have also been examined.  Test,  calculations 
show a dramatic  improvement in results  obtained from IL 

fourth order  scheme as compared  with  results from ZL 

second order  scheme.  These  particular  results we inde- 
pendent of whether t,he equation is in  advection or con- 
servation  form, but  it  is felt that, as in one dimension, 
the  more  accurate solution will come from equrLtions in 
conservation  form. 
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